begell house, inc.

Journal Production
50 Cross Highway
Redding, CT 06896
Phone: 1-203-938-1300
Fax: 1-203-938-1304
Begell House Production Contact : journals@begellhouse.com

Journal: Journal of Long-Term Effects of Medical Implants
Year: $2011 \quad$ Volume: 3
Article Title: Long-term complications of mesh repairs for abdominal wall hernias

Dear Author:

Please review the attached PDF file which contains the author proof of your article.
This is your only opportunity to review the editing, typesetting, figure placement, and correctness of text, tables, and figures. Answer copyeditor's queries in the margin. Failure to answer queries will result in the delay of publication of your article, so please make sure they are all adequately addressed. You will not be charged for any corrections to editorial or typesetting errors; however, you will be billed at the rate of $\$ 25$ per hour of production time for rewriting, rewording, or otherwise revising the article from the version accepted for publication ("author's alterations"); any such charges will be invoiced and must be paid before the article is published.

Please return your corrections in one of the following ways: (1) Clearly mark your corrections on the page proofs and upload the corrected file or indicate your corrections in a list, specifying the location of the respective revisions as precisely as possible. If you wish to order offprints (see form below) please fill out and upload the form onto the submission site with your corrections. After uploading all files please be sure to click on the submit button so that we will be able to access your revisions.

Please read the instructions carefully and if possible email your corrections to me within 48 hours (not including weekends). If you need more time, please let me know at your earliest convenience. No article will be published without confirmation of the author's review. If we do not hear from you within the allotted time, we will be happy to hold your article for a future issue, to give you more time to make your corrections.
Below is a form for ordering offprints, issues, or a subscription. As corresponding author, you will receive a complimentary copy of this issue. If you wish to order extra issues or offprints, please fill in the appropriate areas and submit with your corrections.

Thank you for your assistance, and please reference in all your correspondence.

Sincerely,

Production Department
Begell House, Inc.

begell house, inc.

Journal Production Department
50 Cross Highway
Redding, Connecticut 06896
203-938-1300 (Phone)
203-938-1304 (Fax)
journals@begellhouse.com

Journal Name: Journal of Long-Term Effects of Medical Implants

Volume/Article \#: Volume 3 / Article \# 3611

Article Title: Long-term complications of mesh repairs for abdominal wall hernias

BILL TO:
SHIP TO:

Dear Author:
As corresponding author, you will receive a complimentary copy of this issue. Please use the order form below to order additional material and/or indicate your willingness to pay for color printing of figures (if applicable).
To purchase individual subscriptions or a personal copy of your article, please go to www.begellhouse.com Allow approximately 3 weeks, from receipt of your page proofs, for the issue to be posted to our website. For institutional pricing on PDF files contact Meghan Rohrmann at 1-203-938-1300 or meghan@begellhouse.com.
If placing an order, this form and your method of payment must be returned with your corrected page proofs. Please include cost of shipment as indicated below; checks should be made payable to Begell House, Inc., and mailed to the above address. If a purchase order is required, it may arrive separately to avoid delaying the return of the corrected proofs.

Long-Term Complications of Mesh Repairs for Abdominal-Wall Hernias

Duray Seker1* \& Hakan Kulacoglu ${ }^{2}$
${ }^{1}$ General Surgeon, Diskapi Yildirim Beyazit Teaching and Research Hospital, Ankara, Turkey;
${ }^{2}$ Chair, Department of Surgery, Professor of Surgery, Diskapi Yildirim Beyazit Teaching and Research Hospital, Ankara, Turkey

*Address all correspondence to: Duray Seker, Diskapi Yildirim Beyazit Teaching and Research Hospital, Ankara, Turkey; duray@superonline.com.

Abstract

The use of prosthetic materials in repair of abdominal-wall hernias can lower the risk of hernia recurrence. Therefore, large numbers of meshes are used worldwide every year. All types of meshes on the market have the potential to cause certain complications, such as fistula formation, migration, infection, and rejection. These long-term, clinical complications, although rare, can be serious. For this reason, we aim to provide a systematic review on these adverse effects. A PubMed search covering the last 20 years was done to obtain articles reporting these long-term effects. After searches with selected keywords, and careful evaluation of the resulting articles, 64 articles reporting specific long-term complications were selected and set aside for analysis. Most of the articles were case reports and retrospective analyses (61/64). No evidence-based data exist regarding prevention of these late complications.

KEY WORDS: hernia, mesh, infection, fistula, rejection, migration

I. INTRODUCTION

Hernia is defined as a bulge at a tissue junction and most commonly occurs within the abdominal wall. ${ }^{1}$ Repair of abdominal hernias is one of the most common operations in surgery, To date, numerous repair techniques have been described for abdominal-wall hernias. Data from randomized controlled trials support the claim that use of prosthetic mesh in abdominal-wall hernia repair can lower the risk of hernia recurrence. ${ }^{2,3}$ However, an ideal mesh has not been produced yet, and all meshes on the market have the potential to cause certain complications, such as infections, chronically draining sinuses, enterocutanous fistulas, and intestinal obstructions. ${ }^{4}$

The choice of mesh type is based on many factors, including surgeon's preference, knowledge, type of hernia, and cost. In fact, there is currently no consensus on when or how to use meshes, and data regarding long-term adverse effects of their implantation are scarce. Groin hernia repairs compose the largest portion of all abdominal-wall hernia repairs. A standard polypropylene mesh is the most frequently used material, with a low complication rate in general. ${ }^{5}$ Even domestic mosquito nets have been used with success in some regions where resources are limited, although the long-term results have not been obtained yet. ${ }^{6}$ Recent data indicate that some characteristics of the meshes, e.g., porosity, are of importance, and that
different operative techniques require different mesh materials. Klinge et al. stated that complications can manifest even after many years, and that any thorough quality control program should include an assessment of explanted implant failures in addition to clinical experience. ${ }^{7}$

While the late complications of meshes are rather rare, they are challenging. Complications such as late infection and migration may cause not only hernia recurrence, but also life-threatening sepsis and intestinal fistulas. ${ }^{8}$ New papers reporting these complications appear every year, although only a few studies exist on the comprehensive analysis of late complications of hernia meshes. Clinical research on late complications requires long follow-up periods. Therefore, there are no specific prospective controlled trials on the late complications of meshes in the English-language literature, although two papers have mentioned late complications as a secondary outcome measure. ${ }^{9,10}$

We herein present a systematic review on late complications of mesh use in elective repair of abdominal-wall hernias.

II. MATERIALS AND DATA COLLECTION

To conduct a comprehensive search of the medical literature, we selected a well-known medical electronic bibliographic database with free and easy access: PubMed. The publication period chosen for this research was from December 1991 to March 2011 (the previous 20 years). We evaluated only the papers that were published in the English language. The key words were bernia, mesh, late infection, migration, fistula, rejection, and mesh related infection. The Boolean operator used was "hernia AND mesh AND migration."The research was limited by "adult" and "human studies" using the "Limits" function of PubMed. Papers that mentioned the selected key words were saved for further evaluation. Since chronic pain is a subjective complaint, the origin of which is not fully understood, this complication was not included in our study.

After reviewing full text versions of the papers that appeared in the PubMed search, we selected for the study only those that included series and cases for elective repairs. Emergency repairs, hiatal hernia repairs, mesh use in infected areas, and abdominal-
wall reconstructions in patients with domain loss were exclusion criteria. All types of abdominal-wall hernia repairs were taken into consideration. Papers that mentioned "late complication" were included. When the authors did not describe a specific complication as "late," we focused on the interval between the index operation and the appearance of the complication, if cited. Late complication was defined as any of four complications (late infection, migration, fistula, rejection) that occurred 6 months or more after the mesh repair.

The type of hernia, the repair technique, the type of mesh material, and the exact interval were recorded, if mentioned in the publications.

III. RESULTS

Initially, our search yielded a total of 2130 articles in PubMed, by using the keywords hernia and mesh, and limiting with bumans and adult and with the interval between 1991 and 2011. Further limiting the search results with the selected keywords revealed a total of 333 publications. The proportion of the articles that mentioned long-term complications within all "hernia and mesh" publications was 15.6%. There were 124 papers for late infection, 112 for fistula, 21 for rejection, and 76 for migration; 304 of the 333 papers could be retrieved as full text (91.3%). Only 64 of those 304 papers (21%) were directly related to our search aim and reported on the defined late complications. A summary of the inclusion and exclusion of the papers from the PubMed database search is presented in Table 1. These publications are listed in Tables 2, 3, and 4 according to the complication types. There were only three prospective trials. The primary outcome measures in these prospective studies were (i) comparison of Maloney darn and Lichtenstein hernia repair, ${ }^{9}$ (ii) usage of synthetic composite mesh in open ventral hernia repair, ${ }^{11}$ and (iii) determination of whether laparoscopic intraperitoneal polytetrafluoroethylene (PTFE) prosthetic patch (LIPP) repair of ventral hernia is superior to open prefascial polypropylene mesh repair. ${ }^{12}$ Most of the remainder were individualized case reports (45/64), while there were some retrospective series (16/64). Five articles were listed in more than one table of complications because they described more than one type of

TABLE 1: Summary of the Exclusion and Inclusion of the Articles Found after Database Search

$$
\begin{aligned}
& \text { Potentially relevant articles identified and screened for } \\
& \text { retrieval } \\
& \qquad \mathrm{n}=338
\end{aligned}
$$

complication. These were the articles reporting migration, and fistula formation as the result of migration. There were a total of 69 cases with long-term complications included in 64 different articles. The distribution of these complications is as follows: 17 cases for fistula formation, 17 cases for late infection, 29 cases for migration, and 6 cases for rejection. Migration appears to be the most common late complication. The lists of these long-term complications, such as fistula formation, late infection, migration, and rejection, are given in Tables 2, 3, 4, and 5, respectively.

The time interval between the index operation and the recognition of a particular complication
differed greatly among the reports. The longest interval was 30 years, for a case with wire mesh migration. ${ }^{13}$ Also, fistulas may develop even after 14 years. ${ }^{14}$ Late infection could be observed 5 years after mesh repair. ${ }^{15}$

IV. DISCUSSION

The use of prosthetic material for repair of hernias considerably decreased their recurrence. With the more common use of prosthetic materials for hernia repair, late complications have been observed more frequently. As "foreign" to the human body, meshes may cause certain adverse reactions. First, the rate
TABLE 2: List of Articles Reporting Fistula Formation

Author	Publication year	N of cases (\%)	Hernia type	Repair type	Mesh type	Interval (months)	End result
Losanoff JE ${ }^{41}$	2010	1	incisional	nr	polypropylene and highdensity polyethylene	300	Small intestinal fistula
Ishiguro Y ${ }^{42}$	2009		inguinal	mesh plug	nr	36	Colocutenous fistula
Foda M ${ }^{43}$	2009		incisional	nr	ePTFE	72	Small intestinal fistula
Zubaidi AM ${ }^{44}$	2006		inguinal	nr	polypropylene	48	Colocutenous fistula
Murphy JW ${ }^{45}$	2006		inguinal	nr	Perfix-plug	24	Sigmoid colon fistula
Acar T ${ }^{38}$	2002		incisional	$n \mathrm{n}$	polypropylene	132	Small bowel fistula
Ott V ${ }^{46}$	2005	1	incisional	$n \mathrm{r}$	polyester	108	Cuteneo-jejunocolic fistula
Costa ${ }^{47}$	2004	1	umblical	nr	polypropylene	12	Small bowel fistula
Lauwers P39	2003	1	guinal	Stoppa	$n \mathrm{r}$	24	Colocutenous fistula
Losanoff JE ${ }^{48}$	2002	1	incisional		polypropylene and highdensity polyethylene	120	Small bowel and colonic fistula
Rieger ${ }^{40}$	2002	1	inguinal	APP	polypropylene	72	Colovesical fistula
Fernandez LR ${ }^{49}$	2001	1	incisional		polypropylene	108	Colocutenous fistula
Steele SR*50	2003	2/58 (3\%)	parastomal	Stove pipe hat	polypropylene	Average 4.4 years	Enterocutenous fistula
Vanclooster P*41	2001	1/1259 (0.08\%)	inguinal	TEP	polypropylene	24	Sigmoidocutenous fistula
Basoglu M*51	2004	2/246 (0.8\%)	incisional	open	polyester/ polypropylene and highdensity polyethylene	Mean 50.6	Enterocutenous fistula
Chew DK ${ }^{14}$	2000	1	incisional	open	polypropylene and highdensity polyethylene	168	Enterocutenous fistula
Miller K ${ }^{53}$	1997	1	inguinal	TAPP	polypropylene	12	Enterocutenous fistula

[^0]| TABLE 3: List of Articles Reporting Late Infection | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Author | Publication year | Number of affected cases (\%) | Hernia type | Repair Technique | Mesh type | Interval (months) |
| Genc V^{12} | 2010 | 1 | inguinal | open | polypropylene | 61 |
| Tolino MJ ${ }^{19}$ | 2009 | | inguinal / incisional | open | $n r$ | 4-60 |
| Lüning TH*46 | 2009 | 1/16(6.2\%) | parastomal | open | polyethylene | Mean 33 |
| Swenson BR*13 | 2008 | 42/506 (8.3\%) | incisional and ventral | Open and laparoscopic | $n \mathrm{r}$ | Up to 947 days |
| lannitti DA**44 | 2008 | 2/455 (0.4\%) | ventral | open | polypropylene mesh and ePTFE | $n \mathrm{r}$ |
| Hasegawa S*45 | 2006 | 1/367 (0.26\%) | inguinal | open | Prolene Hernia System | 24 |
| Singh-Ranger D ${ }^{47}$ | 2007 | 1 | inguinal | TEP | Prolene | 10 |
| Delikoukos S*48 | 2007 | 5/1452 (0.35\%) | inguinal | open | polypropylene | 2-4.5 years |
| Bliziotis A ${ }^{49}$ | 2006 | 1 | incisional | open | $n \mathrm{r}$ | 6 |
| Fawole AS*50 | 2006 | 14/2017 (0.69\%) | inguinal | nr | polypropylene | Mean 11 |
| Jezupovs A*51 | 2006 | 4/423 (0.94) | | open | polypropylene | Mean 15 |
| De Ruiter P*52 | 2005 | 2.3\% | paracolostom | open | polypropylene | $n \mathrm{r}$ |
| Basoglu M ${ }^{* 42}$ | 2004 | 13/264 (4.9\%) | incisional hernia | open | polypropylene and high-density polyethylene/polyester | Average 4.4 years |
| Petersen S*53 | 2000 | 8/121 (6.6\%) | incisional | open | Polypropylene/polyester/ePTFE | Up to 16 |
| DeMaria EJ**54 | 2000 | 1/21 (4.7\%) | ventral | LIPP | PTFE | 8 |
| Avtan L5 | 1997 | 3 | inguinal | TAPP | $n \mathrm{r}$ | \# |
| Gillion JF*56 | 1997 | 5/158 (3.1\%) | incisional | open | ePTFE | Mean 37 |
| ${ }^{*}$ retrospective stu **prospective stu nr: not reported TAPP: transabdom ePTFE: expanded \# 15 days, 3 mon | dies dies
 inal pre-perito polytetrafluor hs, 10 months | eal thylene | | | | |

[^1]| TABLE 4: (Continued) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Author | Publication year | Number of affected cases (\%) | Hernia type | Repair technique | Mesh type | Interval (months) | End Result |
| Chowbey PK ${ }^{74}$ | 2006 | | inguinal | TEP | $n r$ | 12 | Migration into bladder |
| Agrawal A ${ }^{23}$ | 2006 | | inguinal | TAPP | $n r$ | 72 | Migration into bladder |
| Celik A ${ }^{75}$ | 2005 | | inguinal | TAPP | $n r$ | 6 | Migration into colon |
| Jensen JB ${ }^{76}$ | 2004 | | inguinal | laparoscopic | polypropylene | App 84 | Erosion intobladder |
| Acar T ${ }^{14}$ | 2002 | 1 | | | polypropylene | App 132 | Enterocutenous fistula |
| Benedetti M^{77} | 2005 | 1 | | plug and mesh | polypropylene | App 24 | Sigmoid colon perforation |
| Ott V ${ }^{37}$ | 2005 | 1 | abdominal | intraperitoneal | polyester | App 72 | Cuteneo-jejunocolic fistula |
| Nowak DD ${ }^{78}$ | 2005 | 1 | inguinal | intra abdominal? | nr | App 18 | Bowel strangulation |
| Moorman ML ${ }^{79}$ | 2004 | 1 | inguinal | nr | polypropylene | 18 | Intraabdominal mass |
| Lauwers P ${ }^{15}$ | 2003 | 1 | inguinal | Stoppa | n | 24/48 | Small bowel obstruction |
| Riaz AA^{80} | 2004 | 1 | incisional | sublay | | App 60 | Erosion into bladder |
| Ferrone R^{81} | 2003 | 1 | inguinal | nr | polypropylene | App 36 | Small bowel obstruction |

[^2]
of early surgical-site infection may be increased in comparison with that of tissue repairs done without a prosthetic material. In general, this particular complication can develop in as high as 8% of the patients who undergo incisional hernia repair with mesh, ${ }^{16}$ and in 5% of patients who undergo open inguinal hernia repair with mesh. ${ }^{17}$ Most of these infections are superficial, and they respond well to antibiotics. ${ }^{18}$ However, some patients with an uneventful recovery may ultimately present with a late infection that requires mesh removal. ${ }^{19}$

Many different factors may contribute to the occurrence of complications after mesh use for hernia repair. These possible factors are the type of mesh, repair technique, experience of the operating surgeon, fixation type of the mesh (suture vs. tucker), pressure exerted on the mesh by body movements, and anatomical location of the mesh. The present review revealed that long-term adverse effects of prosthetic meshes can be seen after almost all kinds of repair techniques, done by either anterior or posterior approach. Mesh type as a factor in the reported late complications seems to be more common when a standard heavyweight polypropylene mesh is used. Nevertheless, it should be kept in mind that this mesh type is also the most commonly used prosthetic material in hernia repairs worldwide. Biologic meshes are not immune to long-term adverse effects. However, no long-term complication report was found in the present search related to use of the large-pore, lightweight, partially absorbable meshes, which were recommended by some authors for their possible advantages of better tissue incorporation, less shrinkage, and less foreign-body reaction. ${ }^{20,21,22,23}$

The exact mechanisms that lead to long-term adverse events are still unclear. Also, any complication such as infection or migration can trigger a chain reaction ending with serious complications, including organ invasion and fistula formation.

Specifically, the exact mechanism oflate infection after mesh repair is still not well understood. Early wound complications (seroma, hematoma) may be the origin oflate manifestations. ${ }^{24}$ Also, late infection may be related to the implantation site of the mesh. Moon et al. agree that preperitoneal placing of the mesh may delay the symptoms of infection. ${ }^{25}$ It is possible that an untreated local infection can cause
a clinically significant late infection. Biological meshes have some theoretical advantages, such as resistance to infection, avoidance of a permanent foreign body, and reconstruction that results in the formation of natural tissue, but they have not gained popularity because of their high cost. ${ }^{26}$

Mechanical migration is mere displacement of the mesh. Inadequate fixation or probably external displacing forces may be the cause. Other mechanisms, however, are slow and gradual movements of the mesh through trans-anatomic places. These mechanisms are secondary to erosion induced by a foreign-body reaction. ${ }^{27}$ Whatever the mechanism is, mesh may move through transanatomic places, even into bowel or vascular lumens. Erosion is an important adverse effect of the mesh. Stiffness of the meshes and their adhesive character may cause erosion whenever a mesh is placed in close proximity to a viscus. In addition, improperly fixed (by suture or any kind of tucker) meshes could lead to erosion followed by displacement. Meshes are generally cut along their edges to fit the size and shape of the anatomical area where they are to be placed. This leads to formation of sharp edges that can cause erosion or fistula formation. In a questionnaire study, Le Blanc reported that 3% of the patients treated with a mesh plug for inguinal hernia suffered from morbid complications due to migration of the plug. ${ }^{28}$

Fistula formation can occur either by direct contact of the mesh with a visceral organ and erosion, or by migration and later erosion by direct contact, or by an improperly placed fixation material that can cause fistula by itself. Any unrecognized violation of the peritoneum during surgery promotes a direct contact of the mesh with visceral organs. Even if the peritoneum is intact, the plug itself may cause erosion through the peritoneum as a resultofbody movements. Intraperitoneal mesh placement is another potential cause for fistula formation. In 1981, Kaufman first reported enterocutaneous fistula formation as a late complication of intraperitoneal placement of mesh. ${ }^{29}$ Intraperitoneal mesh replacement also increases the risk of mesh migration. ${ }^{30-32}$

Rejection is another problem of mesh hernia repair, also with a poorly understood mechanism: the exact cause or causes of rejection are still unknown. Whatever the type, mesh is a potential foreign body
for human beings. As suggested by Wang et al., the host-versus-mesh reaction may be the cause. ${ }^{33}$ The same principles seen in graft-versus-host reactions in transplant patients may apply to mesh rejection. The authors who reported rejection in their articles described the rejection as formation of a productive sinus ${ }^{34}$ or slow growth of a pseudoabscess, with bacterial cultures showing no bacterial growth. ${ }^{35}$ Some authors merely noted the rejection without providing any description. Use of biological materials in hernia repair may help to overcome this problem. Biological materials are considered to be a better alternative than synthetic mesh, based on the rate and type of complications. These include chronic foreign-body response, intestinal fistulas, mesh erosion into viscera, and migration. ${ }^{36}$

Standard polypropylene mesh is the most frequently used material in mesh repairs. It is totally non-absorbable and strong. However, this material has been suspected of adhesion formation to bowels, thereby causing fistulas. Therefore, newer meshes with low weight, more flexibility, and a nonadhesive inner side have been developed to lower the rate of mesh-related complications. Indeed, these newer meshes have provided some better results in clinical studies. However, the present review revealed that including fistula formation, every type of late complication can be developed following use of all kinds of meshes. The frequencies may decrease but the risk persists in certain incidences.

Probably millions of mesh hernia repair surgeries are performed yearly worldwide. There is no doubt that hundreds or even thousands of mesh-related late complications are observed. Howeyer, possibly, only a small proportion of those are reported in journal articles. The various percent rates for particular complications found in the present review may reflect many more actual cases with late complications. In fact, Robinson et al. reported that 252 adverse effects related to the use of surgical mesh for hernia repair were among events that were recorded in the Food and Drug Administration's (FDA) Manufacturer User Facility Device Experience Database, between January 1996 and September 2004. ${ }^{37}$

Since the use of prosthetic material in hernia repair is increasing, we should not be surprised to encounter these late complications more frequently in the near future. Since every type of mesh,
whatever the operation and technique in which these meshes are used, has the potential for causing such complications, we need to know not the probable but the exact mechanisms and biological processes so that we can overcome these problems scientifically. Currently, there are no evidence-based preventive solutions described in the biomedical publications.

V. CONCLUSION

Prosthetic mesh use in treatment of abdominal-wall hernias can result in serious long-term complications. Everysurgeon who deals with the repair of abdominalwall hernias should be aware of late complications of meshes and how to manage them. In addition, studies for development of the ideal mesh should be ongoing. The ideal mesh may be a better synthetic mesh with better tissue compatibility, or a biologic mesh with low cost. In conclusion, the evolution of hernia repair is not yet complete. It is possible that today's surgeons will be asked the following question by their grandchildren: Why did you put those plastic patches into people's tummies?

REFERENCES

1. El-Hayek KM, Chad B.Biologic prosthetic materials for hernia repairs. J Long Term Eff Med Implants. 2010;20(2):159-69.
2. Luijendijk RW, Hop WC, van del Tol MP, de Lange DC, Braaksma MM, Ijzermans JN, Boelhouwer RU, de Vries BC, Salu MK, Wereldsma JC, Bruijninckx CM, Jeekel J. A comparision of suture repair with mesh repair for incisional hernia. N Engl J Med. 2000;343:392-8.
3. Grant AM. Open mesh versus non-mesh repair of groin hernia: meta-analysis of randomised trials based on individual patient data. Hernia. 2002;6:130-6.
4. Leber GE, GarbJL,Alexander AL, Reed WP.Longterm complications associated with prosthetic repair of incisional hernias. Arch Surg. 1998;133:378-82.
5. Robinson TN, Clarke JH, Schoen J, Walsh MD. Major mesh-related complications following hernia repair: events reported to the Food and Drug Administration. Surg Endosc. 2005;19(12):1556-60.
6. Shillcutt SD, Clarke MG, Kingsnorth AN. Cost-effectiveness of groin hernia surgery in the Western Region of Ghana. Arch Surg. 2010 Oct;145(10):954-61.
7. Klinge U, Klink CD, Klosterhalfen B. The "ideal" mesh-more than a mosquito net. Zentralbl Chir. 2010;135(2):168-74.
8. Phillips JD, Nagle AP. Minimally invasive approaches to incisional hernia repair. J Long Term Eff Med Implants. 2010;20(2):117-28.
9. Kucuk HF, Sikar HE, Kurt N, Uzun H, Eser M, Tutal F, Tuncer Y. Lichtenstein or darn procedure in inguinal hernia repair: a prospective randomised comperative study. Hernia. 2010;14(4):357-60.
10. de Vries Reilingh TS, van Goor H, Charbon JA, Rosman C, Hesselink EJ, van derWilt GJ, Bleichrodt RP. Repair of giant midline abdominal wall hernias: "components separation technique" versus prosthetic repair: interim analysis of a randomized controlled trial. World J Surg. 2007;31(4):756-63.
11. Iannitti DA, Hope WW, Norton HJ, Lincourt AE, Millikan K, Fenoglio M, Moskowitz M. Technique and outcomes of abdominal incisional hernia repair using a synthetic composite mesh: a report of 455 cases. J Am Coll Surg. 2008;206(1):83-8.
12. DeMaria EJ, Moss JM, Sugerman HJ. Laparoscopic intraperitoneal polytetrafluoroethylene (PTFE) prosthetic patch repair of ventral hernia. Prospective comparision of open prefascial polypropylene mesh repair. Surg Endosc. 2000;14(4):326-9.
13. Majeski J. Migration of wire mesh into the intestinal lumen causing an intestinal obstruction 30 years after repair of a ventral hernia. South Med J. 1998;91(5):496-8.
14. Chew DK, Choi LH, Rogers AM. Enterocutenous fistula 14 years after prosthetic mesh repair of a ventral incisional hernia: a life-long risk? Surgery. 2000;127(3):352-3.
15. Genc V, Ensari C, Ergul Z, Kulacoglu H. A very late-onset deep infection after prosthetic inguinal hernia repair. Chirurgia (Bucur). 2010;105(4):555-7.
16. Swenson BR, Camp TR, Mulloy DP, Sawyer RG. Antimicrobial-impregnated surgical incise drapes in the prevention of mesh infection after ventral hernia repair. Surg Infect (Larchmt). 2008;9(1):23-32.
17. Bowens NM, Morris JB. Inguinal hernia: open surgical repair using mesh. J Long Term Eff Med Implants. 2010;20(2):89-104.
18. Trunzo JA, Ponsky JL, Jin J, Williams CP, Rosen MJ. A novel approach for salvaging infected prosthetic mesh after ventral hernia repair. Hernia. 2009;13(5):545-9.
19. Tolino MJ, Tripoloni DE, Ratto R, Garcia MI. Infections associated with prosthetic repairs of
abdominal wall hernias: pathology, management and results. Hernia. 2009;13(6):631-7.
20. Agarwal BB, Agarwal KA,Mahajan KC. Prospective double-blindrandomized controlledstudy comparing heavy- and lightweight polypropylene mesh in totally extraperitoneal repair of inguinal hernia: early results. Surg Endosc. 2009 Feb;23(2):242-7.
21. Schug-Pass C, Tamme C, Sommerer F, Tannapfel A, Lippert H, Köckerling F. A lightweight, partially absorbable mesh (Ultrapro) for endoscopic hernia repair: experimental biocompatibility results obtained with a porcine model. Surg Endosc. 2008 Apr;22(4):1100-6.
22. Brown CN, Finch JG. Which mesh for hernia repair? Ann R Coll Surg Engl. 2010;92(4);272-8.
23. Shah BC, Goede MR, Bayer R, Buettner SL, Putney SJ, McBride CL, Oleynikov D. Does type of mesh used have an impact on outcomes in laparoscopic inguinal hernia? Am J Surg. 2009 Dec;198(6):759-64.
24. Tolino MJ, Tripolomi DE. Late-onset deep mesh infection after inguinal hernia repair. Hernia. 2008;12(1):107; author reply 109.
25. Moon V, Chaudry G, Choy C, Ferzli G. Mesh infection in the era of laparoscopy. J Laparoendosc Adv Surg Tech A. 2004;14(6):349-52.
26. Agresta F, Bedin N. Transabdominal laparoscopic inguinal hernia repair: is there a place for biological mesh? Hernia. 2008;12(6):609-12.
27. Agrawal A, Avill R. Mesh migration following repair of inguinal hernia: a case report and review of literature. Hernia. 2006;10(1):79-82.
28. LeBlanc KA. Complications associated with the plug and patch method of inguinal herniorrhaphy. Hernia. 2001;5(3):135-8.
29. Kaufman Z, Engelberg M, Zager M. A late complication of Marlex mesh repair. Dis Colon Rectum. 1981;24(7):543-4.
30. van't Riet M, Burger JW, Bonthuis F, Jeekel J, Bonjer HJ. Prevention of adhesion formation to polypropylene mesh by collagen coating: a randomized controlled study in a rat model. Surg Endosc. 2004;18(4):681-5.
31. Borrazzo EC, Belmont MF, Boffa D, Fowler DL. Effect of prosthetic material on adhesion formation after laparoscopic ventral hernia repair in a porcine model. Hernia. 2004;8(2):108-12.
32. Aube C, Pessaux P, Tuech JJ, du Plessis R, Becker P, Caron C, Arnaud JP. Detection of peritoneal adhesions using ultrasound examination for the evaluation of an innovative intraperitoneal mesh. Surg Endosc. 2004;18(1):131-5.
33. Wang AC, Lee LY, Lin CT, Chen JR. A histologic and immunohistochemical analysis of defective vaginal healing after continence taping procedures: a prospective case controlled pilot study. Am J Obstet Gynecol. 2004;191(6):1868-74.
34. Sakorafas GH,Halikias I,Nissotakis C,Kotsifopoulos N, Stavrou A, Antonopoulos C, Kassaras GA. Open tension free repair of inguinal hernias; the Lichtenstein technique. BMC Surg. 2001;1:3.
35. FoschiD,Corsi F,Cellerino P,Trabucchi A,Trabucchi E. Late rejection of the mesh after laparoscopic hernia repair. Surg Endosc. 1998;12(5):455-7.
36. Peppas G, Gkegkes ID, Makris MC, Falogos ME. Biological mesh in hernia repair, abdominal wall defects, and reconstruction and treatment of pelvic organ prolapse: a review of the clinical evidence. Am Surg. 2010;76(11):1290-5.
37. Robinson TN, Clarke JH, Schoen J, Walsh MD. Major mesh-related complications following hernia repair: events reported to the Food and Drug Administration. Surg Endosc. 2005;19(12):1556-60.
38. Acar T,Gomceli I,Tacyildiz R, Sozen S, Karakayali S, Aydin R.Enterocutenous fistula due to polypropylene mesh migration. Ir J Med Sci. 2002;171(3):172-4.
39. Lauwers P, Bracke B, Hubens G, Vaneerdeweg W. Unusual complications of preperitoneal mesh implantation in the treatment of inguinal hernia. Acta Chir Belg. 2003;103(5):513-6.
40. Rieger N, Brundell S. Colovesical fistula secondary to laparoscopic transabdominal preperitoneal polypropylene (TAPP) mesh hernioplasty. Surg Endosc. 2002;16(1):218-9.
41. Losanoff JE, Salwen WA, Basson MD, Levi E. Large neomucosal space 25 years after mesh repair of ventral hernia. Am J Surg. 2010;199(4):e39-41.
42. Ishiguro Y, Horie H, Satoh H, Miyakura Y, Yasuda Y, Lefor AT. Colocutenous fistula after left inguinal hernia repair using the mesh plug technique. Surgery. 2009;145(1):120-1.
43. Foda M, Carlson MA. Enterocutenous fistula associated with ePTFE mesh: case report and review of the literature. Hernia. 2009;13(3):323-6.
44. Zubaidi AM, AI Saghier M, Kabbani M, Abdo A. Colocutenous fistula after mesh plug inguinal hernia repair-a delayed complication. Ann Saudi Med. 2006;26(5):385-7.
45. Murphy JW, Misra DC, Silverglide B. Sigmoid colonic fistula secondary to Perfix-plug left inguinal hernia repair. Hernia. 2006;10(5):436-8.
46. Ott V, Groebli Y, Schneider R. Late intestinal fistula formation after incisional hernia using intraperitoneal mesh. Hernia. 2005;9(1):103-4.
47. Costa D, Tomas A, Lacueva J, de Asis Perez F, Oliver I, Arroya A, Sanchez A, Andreu J, Gallego JA, Calpena R. Late enterocutenous fistula as a complication after umblical hernioplasty. Hernia. 2004;8(3):271-2.
48. Losanoff JE, Richman BW, Jones JW. Enterocolocutenous fistula: a late consequence of polypropylene mesh abdominal wall repair: case report and review of the literature. Hernia. 2002;6(3):144-7.
49. Fernandez LR, Martinez SC, Ortega DP, Fradejas LJM, Marin LFJ, Moreno AM. Colocutenous fistula due to polypropylene mesh. Hernia. 2001;5(2):107-9.
50. Steele SR, Lee P, Martin MJ, Mullenix PS, Sullivan ES. Is parastomal hernia repair with polypropylene mesh safe? Am J Surg. 2003;185(5):436-40.
51. Vanclooster P, Smet B, de Gheldere C, Segers K. Laparoscopic inguinal hernia repair: review of 6 years experience. Acta Chir Belg. 2001;101(3):135-8.
52. Basoglu M, Yildirgan MI,YilmazI, Balik A, Celebi F, Atamanalp SS, Polat KY,Oren D.Late complications of incisional hernias following prosthetic mesh repair. Acta Chir Belg. 2004;104(4):425-8.
53. Miller K, Junger W. Ileocutenous fistula formation following laparoscopic polypropylene mesh hernia repair. Surg Endosc. 1997;11(7):772-3.
54. Hasegawa S, Yoshikawa T, Yamamoto Y, Ishiwa N, Morinaga S, Noguchi Y, Ito H, Wada N, Inui K, Imada T, Rino Y, Takanashi Y. Long-term outcome after hernia repair with the prolene hernia system. Surg Today. 2006;36(12):1058-62.
55. Lüning TH, Spillenaar-Bilgen EJ. Parastomal hernia: complications of extra-peritoneal onlay mesh placement. Hernia. 2009;13(5):487-90.
56. Singh-Ranger D, Taneja T, Sroden P, Peters J. A rare complication following laparoscopic TEP repair: case report and discussion of the literature. Hernia. 2007;11(5):453-6.
57. Delikoukos S, Tzovaras G, Liakou P, Mantzos F, Hatzitheofilou C. Late-onset deep mesh infection after inguinal hernia repair. Hernia. 2007;11(1):15-7.
58. Bliziotis IA, Kasiakou SK, Kapaskelis AM, Falagas ME. Mesh-related infection after hernia repair: case report of an emerging type of foreign-body related infection. Infection. 2006;34(1):46-8.
59. Fawole AS, Chaparala RP, Ambrose NS. Fate of the inguinal hernia following removal of infected prosthetic mesh. Hernia. 2006;10(1):58-61.
60. 60. Jezupovs A, Mihelsons M. The analysis of infection after polypropylene mesh repair of abdominal wall hernia. World J Surg. 2006;30(12): 2270-8; discussion 2279-80.
1. de Ruiter P, Bijnen AB. Ring-reinforced prosthesis for paracolostomy hernia. Dig Surg. 2005;22(3):152-6.
2. Petersen S, Henke G, Freitag M, Faulhaber A, Ludwig K. Deep prosthesis infection in incisional hernia repair: predictive factors and clinical outcome. Eur J Surg. 2001;167(6):453-7.
3. Avtan L, Avci C, Bulut T, Fourtanier G. Mesh infections after laparoscopic inguinal hernia repair. Surg Laparosc Endosc. 1997;7(3):192-5.
4. Gillion JF, Begin GF, Marecos C, Fourtanier G. Expanded polytetrafluoroethylene patches used in the intraperitoneal or extraperitoneal position for repair of incisional hernias of the anterolateral abdominal wall. Am J Surg. 1997;174(1):16-9.
5. Jani K, Palanivelu C, Malladi V, Rajan PS, Rajapandian S, Shetty R, Senthilkumar R, Kavalkat A. Late rejection after transabdominal preperitoneal inguinal repair: laparoscopic extraction of mesh. Indian J Gastroenterol. 2005 Sep-Oct;24(5):219-20.
6. Misra S, Raj PK, Tarr SM, Treat RC. Results of AlloDerm use in abdominal hernia repair. Hernia. 2008;12(3):247-50.
7. Hofbauer C, Andersen PV, Juul P, Qvist N. Late mesh rejection as a complication to transabdominal preperitoneal laparoscopic hernia repair. Surg Endosc. 1998;12(9):1164-5.
8. Chen MJ, Tian YF. Intraperitoneal migration of a mesh plug with a small intestinal perforation: report of a case. Surg Today. 2010;40(6):566-8.
9. El Hakam MZ, Sharara AI, Chedid V. Persistent left lower abdominal pain. Gastroenterology. 2010;138(1):e5-6.
10. Hamouda A, Kennedy J, Grant N, Nigam A, Karanjia N. Mesh erosion into the urinary bladder following laparoscopic inguinal hernia repair; is this the tip of the iceberg? Hernia. 2010;14(3):317-9.
11. Rettenmaier MA, Heinemann S, Truong H, Micha JP, Brown JV 3rd, Goldstein BH. Marlex mesh mimicking an adnexal malignancy. Hernia. 2009;13(2):221-3.
12. Liang X, CaiXJ, Yu H, Wang YF. Strangulated bowel obstruction resulting from mesh plug migration after open inguinal hernioplasty: case report. Chin Med J. 2008;121(2):183-4.
13. Lo DJ, Bilimoria KY, Pugh CM. Bowel complications after prolene hernia system (PHS) repair: a case report and review of the literature. Hernia. 2008;12(4):437-44.
14. Kurukahvecioglu O, Ege B, Yazicioglu O, Tezel E, Ersoy E. Polytetrafluoroethylene prosthesis migration into the bladder after laparoscopic hernia
repair: a case report. Surg Laparosc Endosc Percutan Tech. 2007;17(5):474-6.
15. Goswami R, Babor M, Ojo A. Mesh erosion into caecum following laparoscopic repair of inguinal hernia (TAPP): a case report and literature review. J Laparoendosc Adv Surg Tech A. 2007;17(5):669-72.
16. Stout CL, Foret A, Christie DB, Mullis E. Small bowel volvulus caused by migrating mesh plug. Am Surg. 2007;73(8):796-7.
17. Di Muria A, Formisano V, Di Carlo F, Aveta A, Giglio D. Small bowel obstruction by mesh migration after umbilical hernia repair. Ann Ital Chir. 2007 Jan-Feb;78(1):59-60.
18. Borchert D, Kumar B, Dennis R, Alberts J. Mesh migration following obturator hernia repair presenting as a bezoar inducing small intestinal obstruction. Hernia. 2008;12(1):83-5.
19. Ojo P, Abenthroth A, Fiedler P, Yavorek G. Migrating mesh mimicking colonic malignancy. Am Surg. 2006;72(12):1210-1.
20. Chowbey PK, Bagchi N, Goel A, Sharma A, Khullar R, Soni V, Baijal M. Mesh migration into the bladder after TEP repair: a rare case report. Surg Laparosc Endosc Percutan Tech. 2006;16(1):52-3.
21. Celik A, Kutun S, Kockar C, Mengi N, Ulucanlar H, Cetin A. Colonoscopic removal of inguinal hernia mesh: report of a case and literature review. J Laparoendosc Adv Surg Tech A. 2005;15(4): 40810.
22. Jensen JB, Jønler M, Lund L. Recurrent urinary tract infection due to hernia mesh erosion into the bladder. Scand J Urol Nephrol. 2004;38(5):438-9.
23. Benedetti M, Albertario S, Niebel T, Bianchi C, Tinozzi FP, Moglia P, Arcidiaco M, Tinozzi S. Intestinal perforation as a long-term complication of plug and mesh inguinal hernioplasty: case report. Hernia. 2005;9(1):93-5.
24. Nowak DD, Chin AC, Singer MA, Helton WS. Large scrotal hernia: a complicated case of mesh migration, ascites, and bowel strangulation. Hernia. 2005;9(1):96-9.
25. Moorman ML, Price PD. Migrating mesh plug: complication of a well-established hernia repair technique. Am Surg. 2004;70(4):298-9.
26. Riaz AA, Ismail M, Barsam A, Bunce CJ. Mesh erosion into the bladder: a late complication of incisional hernia repair. A case report and review of the literature. Hernia. 2004;8(2):158-9.
27. Ferrone R, Scarone PC, Natalini G. Late complication of open inguinal hernia repair: small bowel obstruction caused by intraperitoneal mesh migration. Hernia. 2003;7(3):161-2.
28. Ismail W, Agrawal A, Zia MI. Fate of chronically infected onlay mesh in groin wound. Hernia. 2002;6(2):79-81.
29. Napier T, Olson JT, Windmiller J, Treat J. A longterm follow-up of a single rural surgeon's experience with laparoscopic inguinal hernia repair. WMJ. 2008;107(3):136-9.

[^0]: *Retrospective studies
 nr: not reported

[^1]: *retrospective study
 retrospective study
 App: appoximately
 TAPP: transabdominal pre-peritoneal
 TEP: totally extra-peritoneal
 TAPP: transabdominal pre-peritoneal
 TEP: totally extra-peritoneal
 PHS: prolene hernia system
 IPOM: intraperitoneal onlay mesh

[^2]: ${ }^{*}$ retrospective study
 App: appoximately
 peritoneal
 PEP: totally extra-peritoneal
 IPOM: intraperitoneal onlay mesh

